ANALISIS ANTIOKSIDAN TANAMAN PETAI (PARKIA SPECIOSA) SECARA IN VITRO DAN IN SILICO

  • Jap Mai Cing Departemen Biokimia, Fakultas Kedokteran, Universitas Kristen Indonesia
  • Muhammad Alfarabi Departemen Biokimia, Fakultas Kedokteran, Universitas Kristen Indonesia
  • Evy Suryani Arodes Departemen Mikrobiologi, Fakultas Kedokteran, Universitas Kristen Indonesia
Keywords: antioksidan, pangan, Parkia speciosa, radikal bebas

Abstract

Pangan fungsional merupakan makanan yang memiliki khasiat kesehatan dan aman dikonsumsi secara berkelanjutan dan biasanya berasal dari makanan yang dikonsumsi sehari-hari. Petai (Parkia speciosa) merupakan pangan yang banyak menjadi masakan di daerah Indonesia. Biji petai merupakan bagian yang banyak dikaji efek kesehatannya. Namun, tidak banyak laporan ilmiah yang mengkaji mengenai bioaktivitas bagian lain dari tanaman petai. Tujuan dari penelitian ini adalah untuk mengukur dan membandingkan aktivitas antioksidan dari biji, batang, daun, dan kulit polong biji petai. Aktivitas tersebut dilakukan dengan metode DPPH (2,2-diphenyl-1-picrylhydrazyl). Kajian in silico juga dilakukan sebagai pendekatan lebih lanjut terhadap aktivitas antioksidannya. Hasil menunjukkan bahwa esktrak dari biji, batang, daun, dan kulit polong biji petai memiliki aktivitas antioksidan dengan kemampuannya menghambat radikal bebas. Aktivitas hambatan ini bernilai 53-68% untuk biji, 74-88% untuk batang, 54-80% untuk daun, dan 73-82% untuk kulit polong biji petai. Hasil analisis in silico menunjukkan bahwa kandungan metabolit dari petai yang berpotensi sebagai agen pereduksi radikal bebas adalah quercetin. Metabolit ini mampu berinteraksi kuat dengan enzim mieloperoksidase. Oleh karenanya, penelitian ini bermanfaat sebagai informasi ilmiah untuk pengembangan pangan fungsional berbasis petai sebagai antioksidan.

References

[1] Mangestuti, Subehan, Widyawaruyanti, A., Zaidi, S.F.H., Awale, S., Kadota, S. 2007. Traditional medicine of Madura island in Indonesia. J Trad Med. 24 (3): 90–103. doi: 10.11339/jtm.24.90.
[2] Sumarni, W., Sudarmin, S., Sumarti, S.S. 2019. The scientification of jamu: a study of Indonesian’s traditional medicine. J. Phys. Conf. Ser. 1321 (3). doi: 10.1088/1742-6596/1321/3/032057.
[3] Iwatani, S., Yamamoto, N. 2019. Functional food products in Japan: a review. Food Sci. Hum. Wellness 8 (2): 96–101. doi: 10.1016/j.fshw.2019.03.011.
[4] Harmayani E., et al. 2019. Healthy food traditions of Asia: exploratory case studies from Indonesia, Thailand, Malaysia, and Nepal. J. Ethn. Foods. 6 (10): 1–18. doi: 10.1186/s42779-019-0002-x.
[5] Yuningtyas S., Roswiem, A.P., Azahra, D., Alfarabi, M. 2023. Antioxidant activity and characterization of arrowroot (Maranta arundinacea) tuber yogurt. Biodiversitas. 24(5): 2850–2854. doi: 10.13057/biodiv/d240539.
[6] Pujiasmonto B., Sulandjari, Manurung, I.R. 2022. Pendampingan budidaya petai berbasis action research di Desa Kenayan, Kecamatan Ngemplak, Kabupaten Sleman, Yogyakarta. Seminar Nasional Pengabdian dan CSR Ke-2.109–113.
[7] Samrit, T., et al. 2024. Ethanolic extract of Parkia speciosa pods exhibits antioxidant and anti-inflammatory properties in lipopolysaccharide-induced murine macrophages by inhibiting the p38 MAPK pathway. Heliyon. 10 (20): e39641. doi: 10.1016/j.heliyon.2024.e39641.
[8] Saleh, M.S.M., Jalil, J., Mustafa, N.H., Ramli, F.F., Asmadi, A.Y., Kamisah, Y. 2021. UPLC-MS-based metabolomics profiling for α-glucosidase inhibiting property of Parkia speciosa pods. Life. 11 (2): 1–12. doi: 10.3390/life11020078.
[9] Oladimeji, B.M., Adebo, O.A. 2024. Antiobesity effect of healthy food crops and functional foods: a systematic review of their mechanisms. Food Sci. Nutr. 12 (3): 1380–1398. doi: 10.1002/fsn3.3856.
[10] Wang, X.Q., Wang, W., Peng, M., Zhang, X.Z. 2021. Free radicals for cancer theranostics. Biomaterials. 266: e120474. doi: 10.1016/j.biomaterials.2020.120474.
[11] Halliwell, B. 2020. Reflections of an aging free radical. Free Radic. Biol. Med. 161: 234–245. doi: 10.1016/j.freeradbiomed.2020.10.010.
[12] Frangie, C., Daher, J. 2022. Role of myeloperoxidase in inflammatioand atherosclerosis (Review). Biomed. Reports. 16:53. doi: 10.3892/br.2022.1536.
[13] Alfarabi, M., Turhadi, Suryowati, T., Imaneli, N.A., Sihombing, P.O. 2022. Antioxidant activity and metabolite profiles of leaves and stem extracts of Vitex negundo. Biodiversitas. 23 (5): 2663–2667. doi: 10.13057/biodiv/d230550.
[14] Wahyuningsih, N., Fatchiyah F., Turhadi, Widodo, N., Rahayu, S., Rifa'i, S. 2025. Virtual screening of polyherbal compounds for AKT1 and HSPB1 inhibition in breast cancer apoptosis pathway. Comput. Biol. Chem. 115: 108374. doi: 10.1016/j.compbiolchem.2025.108374.
[15] Kamisah, Y., Othman, F., Qodriyah, H.M.S., Jaarin, K. 2013. Parkia speciosa Hassk.: a potential phytomedicine. Evidence-based Complement. Altern. Med. 2013. doi: 10.1155/2013/709028.
[16] Rahman, N.N.N.A., Zhari, S., Sarker, M.Z.I., Ferdosh, S., Yunus, M.A.C., Kadir, M.O.A. 2012. Profile of Parkia speciosa hassk metabolites extracted with SFE using FTIR-PCA method. J. Chinese Chem. Soc. 59 (4): 507–514. doi: 10.1002/jccs.201100104.
[17] Mahdani, F.Y., et al. 2024. Potential of Parkia Speciosa Empty pod extract as a topical anti-inflammatory orabase: in silico study. Malaysian J. Med. Heal. Sci. 20: 59–66. doi: 10.47836/mjmhs.20.s12.10.
[18] Mustafa, N.H., Jalil, J., Saleh, M.S.M., Zainalabidin, S., Asmadi, A.Y., Kamisah, Y. 2023. Parkia speciosa Hassk. empty pod extract prevents cardiomyocyte hypertrophy by inhibiting MAPK and calcineurin-NFATC3 signaling pathways. Life. 13 (1). doi: 10.3390/life13010043.
[19] Kudatarkar, N., Jalalpure, S., Patil, V.S., Kurangi, B. 2021. System biology and chemoinformatics approaches to decode the molecular mechanisms of Chrysin against colon cancer. J. Appl. Pharm. Sci. 11 (9): 057–065. doi: 10.7324/JAPS.2021.110907.
[20] Blair-johnson, M., Fiedler, T., Fenna, R. 2001. Human myeloperoxidase : structure of a cyanide complex and its interaction with bromide and thiocyanate substrates at 1.9 Å resolution. 40: 13990–13997.
[21] Jakubec, D., Skoda, P., Krivak, R., Novotny, M., Hoksza, D. 2022. PrankWeb 3: accelerated ligand-binding site predictions for experimental and modelled protein structures. Nucleic Acids Res. 50: W593–W597. doi: 10.1093/nar/gkac389.
[22] Yuningtyas, S., Alfarabi, M., Lestari, Y., Noviardi, H. 2024. The in vitro and in silico study of α-glucosidase inhibition by kombucha derived from Syzygium polyanthum (Wight) walp. leaves. HAYATI J. Biosci. 31 (5): 951–963. doi: 10.4308/hjb.31.5.951-963.
[23] Suprapto, P.K., et al. 2024. Plant anatomy: definition, classification of plant organs and tissue, and design of a visuospatial transformation learning model for teaching biology. Indones. J. Sci. Technol. 9 (2): 557–584. doi: 10.17509/ijost.v9i2.72105.
[24] Blois, M.S. 1958. Antioxidant determinations by the use of a stable free radical. Nature. 181: 1199-1200.
[25] Alfarabi, M., et al. 2022. Bioactivity and metabolite profile of papaya (Carica papaya) seed extract. Biodiversitas. 23 (9): 4589–4600. doi: 10.13057/biodiv/d230926.
[26] Daina, A., Michielin, O., Zoete, V. 2017. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7: 1–13. doi: 10.1038/srep42717.
[27] Bulusu, G., Desiraju, G.R. 2020. Strong and weak hydrogen bonds in protein–ligand recognition. J. Indian Inst. Sci. 100 (1): 31–41. doi: 10.1007/s41745-019-00141-9.
[28] Makowski, M., Bogunia, M. 2020. Influence of ionic strength on hydrophobic interactions in water: dependence on solute size and shape. J. Phys. Chem. B. 124 (46): 10326–10336. doi: 10.1021/acs.jpcb.0c06399.
[29] Roth, C.M., Neal, B.L., Lenhoff, A.M. 1996. Van der Waals interactions involving proteins. Biophys. J. 70 (2): 977–987. doi: 10.1016/S0006-3495(96)79641-8
Published
2025-05-15
How to Cite
Mai Cing, J., Alfarabi, M., & Suryani Arodes, E. (2025). ANALISIS ANTIOKSIDAN TANAMAN PETAI (PARKIA SPECIOSA) SECARA IN VITRO DAN IN SILICO. Jurnal Farmamedika (Pharmamedika Journal), 10(1), 114-122. https://doi.org/10.47219/ath.v10i1.465